FACTORS FOR UNIT CONVERSIONS

Quantity	Equivalent Values		
Mass	$1 \text{ kg} = 1000 \text{ g} = 2.20462 \text{ lb}_{\text{m}}$		
	$1 \text{ lb}_{\text{m}} = 16 \text{ oz} = 453.593 \text{ g} = 0.453595 \text{ kg}$		
Length	$1 \text{ m} = 100 \text{ cm} = 1000 \text{ mm} = 10^6 \text{ microns (}\mu\text{m}) = 39.37 \text{ in.} = 3.2808 \text{ ft} = 1.0936 \text{ yd} = 0.0006214 \text{ mile}$		
	1 ft = 12 in. = $1/3$ yd = 0.3048 m = 30.48 cm		
Volume	$1 \text{ m}^3 = 1000 \text{ L} = 10^6 \text{ cm}^3 = 10^6 \text{ mL} = 35.3145 \text{ ft}^3 = 264.17 \text{ gal} = 1056.68 \text{ qt}$		
	$1 \text{ ft}^3 = 1728 \text{ in.}^3 = 7.4805 \text{ gal} = 0.028317 \text{ m}^3 = 28.317 \text{ L} = 28317 \text{ cm}^3$		
Force	$1 \text{ N} = 1 \text{ (kg m)/s}^2 = 10^5 \text{ dynes} = 10^5 \text{(g cm)/s}^2 = 0.22481 \text{ lb}_f$		
	$1 \text{ lb}_f = 32.174 (\text{lb}_m \text{ft})/\text{s}^2 = 4.4482 \text{ N} = 4.4482 \times 10^5 \text{ dynes}$		
Pressure	1 atm = 1.01325×10^5 N/m ² = 1.01325×10^5 Pa = 101.325 kPa = 1.01325 bars = 760 mm Hg at 0°C = 760 torr = 10.333 m H ₂ O at 4°C = 14.696 lb _f /in. ² = 14.696 psi = 33.9 ft H ₂ O at 4°C = 29.921 in. Hg at 0°C		
Energy	$1 \text{ J} = 1 \text{ N m} = 10^7 \text{ ergs} = 10^7 \text{ dyne cm} = 2.778 \times 10^{-7} \text{ kW h} = 0.23901 \text{ cal} = 0.7376 \text{ ft lb}_f$ = $9.486 \times 10^{-4} \text{ Btu}$		
Power	$1~W = 1~J/s = 0.23901~cal/s = 0.7376~ft~lb_f/s = 9.486 \times 10^{-4}~Btu/s = 1.341 \times 10^{-3}~hp$		
Temperature	$(T \text{ in } ^{\circ}\text{C}) = ((T \text{ in } ^{\circ}\text{F}) - 32^{\circ}\text{F})/(1.8\Delta^{\circ}\text{F}/\Delta^{\circ}\text{C})$		
	$(T \text{ in } ^{\circ}\text{F}) = (T \text{ in } ^{\circ}\text{C})(1.8\Delta^{\circ}\text{F}/\Delta^{\circ}\text{C}) + 32^{\circ}F$		
	$(T \text{ in } K) = (T \text{ in } ^{\circ}C) + 273.15$		
	$(T \text{ in R}) = (T \text{ in } ^{\circ}\text{F}) + 459.67$		
Electric Current	(Ampere) 1 A		
Frequency	(hertz) $1 \text{ Hz} = 1 \text{ s}^{-1}$		
Electric potential	(volt) $1 \text{ V} = 1 \text{ W/A} = 1 \text{ J/C}$		
Electric resistance	$(ohm) 1 \Omega = V/A$		
Electric charge	(coulomb) $1 C = A s$		

Example: The factor to convert grams to lb_m is $\left(\frac{2.20462 \, lb_m}{1000 \, g}\right)$

Commonly Used SI Prefixes

Factor	Prefix	Symbol
10^{12}	tera	T
10^{9}	giga	G
10^{6}	mega	M
10^{3}	kilo	k
10 ⁻¹	deci	d
10^{-2}	centi	С
10^{-3}	milli	m
10 ⁻⁶	micro	μ
10 ⁻⁹	nano	n
10 ⁻¹²	pico	p
10^{-15}	femto	f

lbs/day = MGD*mg/L * 8.34

1 ppm = 1 mg/L for aqueous solutions

zero order reaction C = Co - kt

Ist order reaction
$$\ln C = \ln Co - kt$$
 or $\ln \frac{c}{co} = -kt$ or $\frac{c}{co} = e^{-kt}$

Half life for 1st order reactions = 0.693 / k where k is reaction rate

Detention Time $t_d = V/Q$

First Order reactions

a) Batch Reactor $C = C_o e^{-kt}$ or ln(C/Co) = -kt

b) CMFR
$$C = \frac{C_o}{1 + kt_d}$$

c) For n identical (same V and td) CMFR

$$C_{n} = \frac{C_{o}}{\left(1 + kt_{d}\right)^{n}}$$

Tracer Flushing if tracer is mixed in the reactor and is being purged by a clean media $C = C_o e^{-t/td}$

Tracer Flushing if tracer is entering a reactor with clean media and is being purged out $C=C_o(1-e^{-t/td})$

Area of a circle = $\pi d^2/4$ where d = diameter

7.48 Gallons =
$$1 \text{ft}^3$$
 3.78 L = 1 Gallon

Hydraulic loading = Q/Surface area of reactor

 $BOD_t = Ultimate BOD (1-e^{-kt})$

56

Fe

$$k_{t} = k_{20}\Theta^{T-20}$$
 $\Theta = \overline{1}.135$ for 4-20°C and 1.056 for 20-30°C

 $\label{eq:Nt} Disinfection \qquad N_t = N_o e^{-kt} \quad \text{where No initial bacteria concentration; Nt final bacteria}$ $\quad \text{concentration}$

Power $G^2 = P/\mu V$ GAS TRANSFER KINETICS $ln(C^*-C_t) = ln(C^*-C_o) - K_L a t$ where Molecular Weights C^* = saturation concentration of oxygen in water \mathbf{C} 12 (mass/volume) Η 1 C_t = oxygen concentration in water at ant time t 16 \mathbf{O} (mass/volume) N 14 $K_L a = gas transfer coefficient (time⁻¹)$ 35.5 Cl t= time S 32